设A( 0,0 ),B( x - 150,0 );则圆Ax^2 + y^2 = 125^2,圆B ( x - 150 )^2 + y^2 = 100^2;交点 x^2 + y^2 - 125^2 =x^2 - 300x + 150^2 + y^2 - 100^2300x = 150^2 - 100^2 + 125^2,x = 375/4;y^2 = 125^2 - (375/4)^2 = ( 125√7/4 )^2,y =±125√7/4;交点 (375/4,±125√7/4 );故,点A(x1,y ),点B( x1-150,y ),则交点为 ( x1+375/4,y±125√7/4 ) 。