a²+b²+ab=c²a²+b²-c²=-ab又cosC=(a²+b²-c²)/2abcosC=-1/2∠C=120°根据三角形面积公式,(absinc)/2=√3cabsinc=2√3cabsin120°=2√3c(√3/2)ab=2√3cab=4c再由余弦定理c²=a²+b²-2abcosC=a²+b²-2ab×(-1/2)=a²+b²+ab∴a²+b²=c²-ab又∵a²+b²≥2ab即c²-ab≥2ab将ab=4c即c=ab/4代入上式,可得(ab/4)²-ab≥2ab在本题中,显然有ab>0,所以上式两边同除以ab,得ab/16-1≥2ab/16≥3ab≥48∴ab的最小值为48.