已知1/X+1/Y=5,求(2X-5XY+2Y)/(X+2XY+Y)的值

匿名网友 |浏览398次
收藏|2019/09/16 17:39

满意回答

2019/09/16 17:55

解 1/x+1/y=5 两边同时乘xy,得: x+y =5xy 整理 (2X-5XY+2Y)/(X+2XY+Y) =[2(x+y)-5xy]/(x+y+2xy] 把x+y=5xy代入(2X-5XY+2Y)/(X+2XY+Y),得: =[10xy-5xy]/[5xy+2xy] =(5xy)/(7xy) =5/7 . 所以(2X-5XY+2Y)/(X+2XY+Y)的值为5/7.

Tridenta

其他回答(10)
  • 由已知等式两边都乘以xy得 x+y=5xy所以 (2X-5XY+2Y)/(X+2XY+Y)=[2(x+y)-5xy]/[(x+y)+2xy] =(10xy-5xy)/(5xy+2xy) =5xy/7xy=5/7
    回答于 2019/09/16 21:33
  • 已知1/X+1/Y=5,则X+Y=5XY,2X+2Y=10XY(2X-5XY+2Y)/(X+2XY+Y)=(2X+2Y-5XY)/(X+Y+2XY)=(10XY-5XY)/(5XY+2XY)=(5XY)/(7XY)=5/7
    回答于 2019/09/16 21:21
  • 1/x+1/y=5x+y=5xy(2x-5xy+2y)/(x+2xy+y)=(10xy-5xy)/(5xy+2xy)=5/7
    回答于 2019/09/16 20:57
  • ∵1/x+1/y=5,∴y+x=5xy。(2x-5xy+2y)/(x+2xy+y)=[2(x+y)-5xy]/[(x+y)+2xy]=(2*5xy-5xy)/(5xy+2xy)=5xy/(7xy)=5/7
    回答于 2019/09/16 20:49
  • 已知1/X 1/Y=5, ( Y+X)/XY=5 X+Y=5XY(2X-5XY+2Y)/(X+2XY+Y)=(10XY-5XY)/(5XY+2XY)=5XY/(7XY)=5/7
    回答于 2019/09/16 20:18
  • 这种题首先就是提取常数,之后再化简原式=[2(x+2xy+y)-9xy]/(x+2xy+y)=2-9xy/(x+2xy+y)对9xy/(x+2xy+y)分子和分母同除以xy后,得原式=2-9/(1/x+1/y+2)=2-9/7=5/7
    回答于 2019/09/16 19:54
  • 1/x+1/y=5(x+y)/xy=5x+y=5xy(2x-5xy+2y)/(x+2xy+y)=(2*5xy-5xy)/(5xy+2xy)=5xy/7xy=5/7
    回答于 2019/09/16 19:42
  • 解: 因为 1/x+1/y=5 所以 x+y=5xy 原式 (2x-5xy+2y)/(x+2xy+y) =[2(x+y)-5xy]/[(x+y)+2xy] =(10xy-5xy)/(5xy+2xy) =5xy/7xy =5/7.
    回答于 2019/09/16 19:12
  • 本题:已知1/X+1/Y=5, 则:X+Y=5XY求:(2X-5XY+2Y)/(X+2XY+Y)=[2(X+Y)-5XY]/(X+Y+2XY)=[2(5XY)-5XY]/(5XY+2XY)=5XY/7XY=5/7
    回答于 2019/09/16 18:53
  • 解答: ∵ 1/x+1/y=5 ∴ x+y=5xy 原式=(2x-5xy+2y)/(x+2xy+y) =[2(x+y)-5xy]/[(x+y)+2xy] =(10xy-5xy)/(5xy+2xy) =5xy/7xy =5/7。
    回答于 2019/09/16 18:20
0人关注该问题
+1

 加载中...