不可以直接令 x = y 代入求出最小值,这没有根据 。事实上,若x = y,则原式为 x^2 + 6x - 41 = 0,x = [ -6 +10√2 )/2;x + y = 10√2 - 6 = 8.14;而实际上,x = 3,y = 5时,x +y有最小值 8 。xy + 4y = 41 - 2x,y( x + 4 ) = 41 - 2x,y = ( 41 - 2x )/(x + 4 );x + y = x +( 41 - 2x )/( x + 4 )= x - ( 2x + 8 )/( x + 4 ) + 49/( x + 4 )= x - 2 + 49/( x + 4 )= x + 4 +49/( x + 4 ) - 6;由均值不等式,x + 4 + 49/( x + 4 )≥ 2√[ ( x + 4 ) * 49/( x + 4 ) ] = 14所以x + 4 + 49/( x + 4 ) - 6最小值为 14 - 6 = 8 。即x + y最小值是 8 。