一阶线性电路,可以用三要素法求解。右侧电流源与5Ω并联,再与15Ω串联,等效为10v电压源与20Ω串联;IL(0-) = 10/20 = 0.5 A;开关闭合,IL不能瞬变;IL(0+) = IL(0-) = 0.5 A;对左右支路作戴维宁等效等效电压U = 10 + 20( 20 - 10 )/( 20 + 20 ) = 15v;等效电阻 R = 20//20 = 10Ω;UL(0+) = 15 - 10IL(0+) = 15 - 10 * 0.5 = 10v;I(0+) = ( 20 - UL(0+) )/20 = ( 20 - 10 )/20 = 0.5A ;IL(∞) = U/R = 15/10 = 1.5A;UL(∞) = 0;I(∞) = 20/20 = 1A ;-t/τ = -t/(L/R) = -10t/0.5 = -20t;1、全响应解法一、列三要素式IL(t) =IL(∞) + [IL(0+) -IL(∞) ]e^(-20t)= 1.5 + [ 0.5 - 1.5 ]e^(-20t)= 1.5 - e^(-20t);I(t) = I(∞) + [ I(0+) - I(∞) ]e^(-20t)= 1 + [ 0.5 - 1 ]e^(-20t)= 1 - 0.5e^(-20t);2、全响应解法二IL(t) = IL(∞) +Ae^(-20t);代入 IL(0+),0.5 = 1.5 +A,A = -1,IL(t) = 1.5 - e^(-20t);I(t) = I(∞) + Ae^(-20t);代入 I(0+),0.5 = 1 + A,A = -0.5,I(t) = 1 - 0.5e^(-20t);3、I(t)的零输入响应、零状态响应公式变形:I(t) = 1 - 0.5e^(-20t)= [ 1 - e^(-20t) ]+ 0.5e^(-20t)前项[ 1 - e^(-20t) ]即零状态响应,后项0.5e^(-20t)为零输入响应 。