1、fX(x) = 15x^2∫ ( x,1 )ydy = 15x^2[ y^2/2 ]( x,1 ) = 15x^2( 1/2 - x^2/2 ),0 < x < 1 ;fY(y) = 15y∫ ( 0,y )x^2dx = 5y[ x^3 ]( 0,y ) = 5y * y^3 = 5y^4,0 <y< 1;2、f Y|X (y|x) = f(x,y)/fX(x) = 15x^2y/[15x^2( 1/2 - x^2/2 ) ] = y/( 1/2 - x^2/2 );计算 P{ X + Y ≤ 1 },需要确定二重积分的积分域。既满足联合密度函数要求,又满足P{ X + Y ≤ 1 }要求的积分域为P{ X + Y≤ 1 } = 2 * 15∫( 0,0.5 )ydy∫( 0,y )x^2dx= 10∫( 0,0.5 )y^4dy= 2[ y^5 ]( 0,0.5 )= 1/16 。