∵ AB=AC+CD,∴ AB>AC,∠B<∠C=60°。∵∠CAD=20°,∴∠ADB=60°+20°=80°。在∆ADC中,用正弦定理。AD/sin60°=AC/sin100°=CD/sin20°=(AC+CD)/(sin100°+sin20°)=AB/(2sin60°cos40°)∴ AD=AB/(2cos40°)在∆ABD中,AD/sinB=AB/sin80°=AB/(2sin40°cos40°)=AD/sin40°∴ sinB=sin40°∴ B=40°用的三角函数公式sin(2x)+sin(2y)=2sin(x+y)cos(x-y)当y=0时成,sin(2x)=2sinxcosx