∵α与β都是锐角,∴ α+2β<3π/2,sinβ>0。∵ cosβ=1/3<0.5<0.5√2,∴ sinβ=√(1-cos²β)=(2/3)√2,β>π/4。∴ 2β>π/2,α+2β>π/2,cos(α+2β)<0。∵ sin(α+2β)=1/5,∴ cos(α+2β)=-√[1-sin²(α+2β)]=-(2/5)√6∴ sin(α+β)=sin[(α+2β)-β]=sin(α+2β)cosβ-cos(α+2β)sinβ=(1/5)*(1/3)-[-(2/5)√6]*(2/3)√2=1/15+(8/15)√3=(1+8√3)/15