计算:1/2*4+1/4*6+1/6*8...+1/198*200

360U3305875791 |浏览1327次
收藏|2022/05/02 21:08

满意回答

2022/05/02 21:39

1/(2*4) + 1/(4*6) + 1/(6*8) + ... + 1/(198*200)= (1/4)[1/(1*2) + 1/(2*3) + 1/(3*4) + ... + 1/(99*100) ]= (1/4)[ 1/2 + ( 1/2 - 1/3 ) + ( 1/3 - 1/4) + ... + ( 1/99 - 1/100) ]= (1/4)[ 1/2 + 1/2 - 1/100) ]= 99/400 。

寂园晓月

其他回答(2)
  • 解:1/2*4+1/4*6+1/6*8...+1/198*200=1/2×[2/(2×4)+2/(4×6)+2/(6×8)+...................+2/(198×200)]=1/2×(1/2-1/4+1/4-1/6+1/6-1/8+..................+1/198-1/200)=1/2×(1/2-1/200)=1/2×99/200=99/400
    回答于 2022/05/02 22:15
  • 【如果】1/(2*4)+1/(4*6)+1/(6*8)+……+1/(198*200)那么原式=(1/4)[1/(1*2)+1/(2*3)+1/(3*4)+……+1/(99*100)]=(1/4)[(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/99-1/100)]=(1/4)(1-1/100)=99/400
    回答于 2022/05/02 21:48
0人关注该问题
+1

 加载中...