一、用导数计算曲线在切点的导数等于切线的斜率;即 y' = 2ax + b,y'(-1) = -2a + b = 4;①切点坐标代入曲线方程,a - b - 2 = 3,a - b = 5;②① + ②,-a = 9,a = -9;b =a - 5 = -9 - 5 = -14;曲线方程y = -9x^2 - 14x - 2 。二、不用导数计算切点坐标代入曲线方程,a - b - 2 = 3, b = a - 5;在切点,ax^2 + bx - 2 = 4x + 7将 b = a - 5代入,ax^2 + ( a - 5 - 4 )x - 9 = 0( ax - 9 )( x + 1 ) = 0切线与曲线只交于一点,所以方程在x = -1 有2个相等的根,即ax - 9 = x + 1 = 0;故 a * (-1) - 9 = 0,a = -9;b = -9 - 5 = -14;曲线方程 y = -9x^2 - 14x - 2 。