ds =√[ (dy)^2 + (dx)^2 ] =√[ (f'(x)^2(dx)^2 + (dx)^2 ] = √[ (f'(x)^2 + 1 ] dx=√{ [ 1/(2√x) - √x/2 ]^2 + 1 } dx = (1/2)√{ 1/x + x + 2 } dx=(1/2)√{ (1 + x^2 + 2x )/x } dx =(1/2) ( x + 1 )x^(-1/2) dx= (1/2) [ x^(1/2) + x^(-1/2) ] dx弧长 S = (1/2)∫( 1,4 )[ x^(1/2) + x^(-1/2) ] dx=(1/2)[ (2/3)x^(3/2) + 2x^(1/2) ] ( 1,4 )= [ (1/3)x^(3/2) + x^(1/2) ] ( 1,4 )= (1/3)[ 4^(3/2) - 1 ] + [ 4^(1/2) - 1 ]= 7/3 + 1= 10/3 。