帮忙做一下这道微积分曲线弧度题拜托了

360U3343008283 |浏览223次
收藏|2022/05/31 05:03

满意回答

2022/05/31 05:10

ds =√[ (dy)^2 + (dx)^2 ] =√[ (f'(x)^2(dx)^2 + (dx)^2 ] = √[ (f'(x)^2 + 1 ] dx=√{ [ 1/(2√x) - √x/2 ]^2 + 1 } dx = (1/2)√{ 1/x + x + 2 } dx=(1/2)√{ (1 + x^2 + 2x )/x } dx =(1/2) ( x + 1 )x^(-1/2) dx= (1/2) [ x^(1/2) + x^(-1/2) ] dx弧长 S = (1/2)∫( 1,4 )[ x^(1/2) + x^(-1/2) ] dx=(1/2)[ (2/3)x^(3/2) + 2x^(1/2) ] ( 1,4 )= [ (1/3)x^(3/2) + x^(1/2) ] ( 1,4 )= (1/3)[ 4^(3/2) - 1 ] + [ 4^(1/2) - 1 ]= 7/3 + 1= 10/3 。

寂园晓月

其他回答(1)
  • 【0】y=(√x)(3-x)/3,y=(3√x-x√x)/3【1】y'=[3/(2√x)-(3/2)√x]/3=(1/√x-√x)/2【2】s'²=y'²+1=(1/x-2+x)/4+1=(1/x+2+x)/4=(1/√x+√x)²/4s'=(1/√x+√x)/2【3】s=∫ds=∫[(1/√x+√x)/2]dx=(√x)(3+x)/3+c对比y'与s',可随手写出结果。【4】s(4)-s(1)=2(3+4)/3-(3+1)/3=10/3
    回答于 2022/05/31 05:19
0人关注该问题
+1

 加载中...