∵ AC绕A逆时针旋转120°得AD,∴ AD=AC,∠CAD=120°。∴∠CAD=∠ACD=(180°-∠CAD)/2=30°∴ CD=sin120°AC/sin30°=AC√3。同理∠BCE=30°,CE=BC√3。∴∠DCE=180°-∠ACD-∠BCE=120°。设P是AB中点,AC=AB/2-PC=3-PC,∴ BC=AB/2+PC=3+PC。∴ DE²=CD²+CE²-2CD*CEcos∠DCE=3AC²+3BC²+3AC*BC=3(3-PC)²+3(3+PC)²+3(3-PC)(3+PC)=3(27+PC²)≥81等号当且仅当PC=0时成立。当C与P重合,即C是AB中点时,DE取最小值√81=9。