一元一次方程的知识点

360U3317226746 |浏览532次
收藏|2022/11/21 17:03

满意回答

2022/11/21 17:11

一元一次方程的知识点在一个方程中,如果只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。(linear equation in one)一般形式:ax+b=0(a、b为常数,a≠0)。一元一次方程只有一个解。一元一次方程的最终结果(方程的解)是x=a的形式一元一次方程的“等式的性质1”和“等式的性质2”1.等式两边同时加或减一个相同数,等式两边相等。(如果a=b,那么a±c=b±c。) 2.等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。(如果a=b,那么ac=bc。如果a=b,c≠0,那么a/c=b/c。)解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。例:7x+23=100解: 7x=100-237x=77x=77÷7x=11在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,教师引导,学生口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.简单的应用:求加数=和—另一个加数求被减数=差+减数求减数=被减数-差求因数=积/另一个因数求被除数=商*除数求除数=被除数/商一般解法:⒈去分母 方程两边同时乘各分母的最小公倍数。⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。⒋合并同类项 将原方程化为ax=b(a≠0)的形式。⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。

刘军平_2017

其他回答(2)
  • 【1】方程。【11】方程的定义。含义未知数的等式,称为方程。【12】方程的解定义。使等式成立的未知数的值,称为方程的解。①数a不是方程的解。②等式x=a,表示a是x的值。③x≈a不是关于x的方程的解。【13】同解方程。若两个方程的解相同,称为同解方程。【14】解方程过程。用简单的同解方程替换,直至求出方程的解。【15】方程的元数。有n个未知数的方程,称为n元方程。【16】整式方程。等式左边和右边都是整式的方程,称为整式方程。【17】整式方程的次数。整式方程经化简后,最高次项的次数,称为方程的次数。【2】一元一次方程。一元方程也是一次方程时,称为一元一次方程。【3】解一元一次方程使用定理。定理1:若a=b,则a+c=b+c。定理2:若a=b,c≠0,则ac=bc。【4】解一元一次方程的步骤。(1)去分母。用定理2。(2)去括号。用分配律。(3)移项。用定理1。(4)合并同类项。用分配律。完成方程的化简。(5)消除未知数的系数。用定理2。【5】一元一次方程解的讨论。完成解方程步骤(4),得ax=b。(1)若a≠0,则方程存在唯一解。(2)若a=0,b≠0,则方程无解。(3)若a=0,b=0,则方程解存在不唯一。
    回答于 2022/11/21 17:57
  • 知识点:ax+b=0(a、b 为常数a不等于0
    回答于 2022/11/21 17:42
0人关注该问题
+1

 加载中...