【如果】y=(16-x)/(-x²+4x)【0<x<4】【解一】y=4/x-3/(x-4)y'=-4/x²+3/(x-4)²=[3x²-4(x-4)²]/[(x²(x-4)²]=-(x²-32x+64)/[x²(x-4)²]=0x²-32x+64=0,x=16±√(16²-64)=16±8√3∵ 0<x<4,∴ x=16-8√3是驻点y(16-8√3)=4/(16-8√3)-3/(12-8√3)=(1/2)/(2-√3)+(3/4)/(2√3-3)=(1/2)(2+√3)+(3/4)(2√3+3)/3=(2+√3)/2+(3+2√3)/4=(7+4√3)/4∴ y≥(7+4√3)/4【解二】y(x²-4x)=x-16,yx²-(4y+1)x+16=0。方程存在实数根。a=y,b=-(4y+1),c=16。∆=b²-4ac=(4y+1)²-4y*16=(4y)²-14(4y)+1≥0[7±√(7²-1)]/4=(7±4√3)/4y≤(7-4√3)/4或者y≥(7+4√3)/4∵ 0<x<4,∴ 16-x>0,-x²+4x=x(-x+4)>0,∴y≥0。∵ 16-x>12,-x²+4x≤4,∴ y>12/4=3,y≥(7+4√3)/4。