设a,b,c是不为1的整数,(a,b,c)=1,且1/a+1/b=1/c,求证:a+b,a-c,b-

360U3333511085 |浏览829次
收藏|2022/07/19 13:02

满意回答

2022/07/19 13:18

∵ (a,b,c)=1∴ a,b,c是正整数。∵ 1/a+1/b=1/c,∴ a>c,b>c。∵ c≠1,∴ (a-c,b-c,c)=1。∴ bc+ac=ab① c²=c²-bc-ac+ab=c(c-b)-a(c-b)=(a-c)(b-c)∴ a-c和b-c是平方数。② a²=a²+ab-(bc+ac)=a(a+b)-c(a+b)=(a-c)(a+b)∴ a+b是平方数。

fff12345

其他回答(1)
  • 1/a + 1/b = 1/c,ab/( a + b ) = c;ab/( a + b )= c( c + 1 )^2/( c + 1 )^2= [ c( c + 1 ) * ( c + 1 ) ] / [ c( c + 1 ) + ( c + 1 ]即a = c( c + 1 ),b = c + 1时,1/a + 1/b = 1/c成立;譬如,c = 2,a = 2( 2 + 1 ) = 6,b = 2 + 1 = 3,1/6 + 1/3 = 1/2;再如,c = 3,a = 3( 3 + 1 ) = 12,b = 3 + 1 = 4,1/12 + 1/4 = 1/3;等等。此时,a + b =c( c + 1 ) + ( c + 1 ) = ( c + 1 )^2;a - c =c( c + 1 ) - c = c^2;b - c = c + 1 - c = 1;即a + b ,a - c ,b - c 都是完全平方数。证毕。
    回答于 2022/07/19 13:27
0人关注该问题
+1

 加载中...